13 research outputs found

    Lead optimization for new antimalarials and Successful lead identification for metalloproteinases: A Fragment-based approach Using Virtual Screening

    Get PDF
    Lead optimization for new antimalarials and Successful lead identification for metalloproteinases: A Fragment-based approach Using Virtual Screening Computer-aided drug design is an essential part of the modern medicinal chemistry, and has led to the acceleration of many projects. The herein described thesis presents examples for its application in the field of lead optimization and lead identification for three metalloproteins. DOXP-reductoisomerase (DXR) is a key enzyme of the mevalonate independent isoprenoid biosynthesis. Structure-activity relationships for 43 DXR inhibitors are established, derived from protein-based docking, ligand-based 3D QSAR and a combination of both approaches as realized by AFMoC. As part of an effort to optimize the properties of the established inhibitor Fosmidomycin, analogues have been synthesized and tested to gain further insights into the primary determinants of structural affinity. Unfortunately, these structures still leave the active Fosmidomycin conformation and detailed reaction mechanism undetermined. This fact, together with the small inhibitor data set provides a major challenge for presently available docking programs and 3D QSAR tools. Using the recently developed protein tailored scoring protocol AFMoC precise prediction of binding affinities for related ligands as well as the capability to estimate the affinities of structurally distinct inhibitors has been achieved. Farnesyltransferase is a zinc-metallo enzyme that catalyzes the posttranslational modification of numerous proteins involved in intracellular signal transduction. The development of farnesyltransferase inhibitors is directed towards the so-called non-thiol inhibitors because of adverse drug effects connected to free thiols. A first step on the way to non-thiol farnesyltransferase inhibitors was the development of an CAAX-benzophenone peptidomimetic based on a pharmacophore model. On its basis bisubstrate analogues were developed as one class of non-thiol farnesyltransferase inhibitors. In further studies two aryl binding and two distinct specificity sites were postulated. Flexible docking of model compounds was applied to investigate the sub-pockets and design highly active non-thiol farnesyltransferase inhibitor. In addition to affinity, special attention was paid towards in vivo activity and species specificity. The second part of this thesis describes a possible strategy for computer-aided lead discovery. Assembling a complex ligand from simple fragments has recently been introduced as an alternative to traditional HTS. While frequently applied experimentally, only a few examples are known for computational fragment-based approaches. Mostly, computational tools are applied to compile the libraries and to finally assess the assembled ligands. Using the metalloproteinase thermolysin (TLN) as a model target, a computational fragment-based screening protocol has been established. Starting with a data set of commercially available chemical compounds, a fragment library has been compiled considering (1) fragment likeness and (2) similarity to known drugs. The library is screened for target specificity, resulting in 112 fragments to target the zinc binding area and 75 fragments targeting the hydrophobic specificity pocket of the enzyme. After analyzing the performance of multiple docking programs and scoring functions forand the most 14 candidates are selected for further analysis. Soaking experiments were performed for reference fragment to derive a general applicable crystallization protocol for TLN and subsequently for new protein-fragment complex structures. 3-Methylsaspirin could be determined to bind to TLN. Additional studies addressed a retrospective performance analysis of the applied scoring functions and modification on the screening hit. Curios about the differences of aspirin and 3-methylaspirin, 3-chloroaspirin has been synthesized and affinities could be determined to be 2.42 mM; 1.73 mM und 522 ÎŒM respectively. The results of the thesis show, that computer aided drug design approaches could successfully support projects in lead optimization and lead identification. fragments in general, the fragments derived from the screening are docke

    Lead optimization for new antimalarials and Successful lead identification for metalloproteinases: A Fragment-based approach Using Virtual Screening

    No full text
    Lead optimization for new antimalarials and Successful lead identification for metalloproteinases: A Fragment-based approach Using Virtual Screening Computer-aided drug design is an essential part of the modern medicinal chemistry, and has led to the acceleration of many projects. The herein described thesis presents examples for its application in the field of lead optimization and lead identification for three metalloproteins. DOXP-reductoisomerase (DXR) is a key enzyme of the mevalonate independent isoprenoid biosynthesis. Structure-activity relationships for 43 DXR inhibitors are established, derived from protein-based docking, ligand-based 3D QSAR and a combination of both approaches as realized by AFMoC. As part of an effort to optimize the properties of the established inhibitor Fosmidomycin, analogues have been synthesized and tested to gain further insights into the primary determinants of structural affinity. Unfortunately, these structures still leave the active Fosmidomycin conformation and detailed reaction mechanism undetermined. This fact, together with the small inhibitor data set provides a major challenge for presently available docking programs and 3D QSAR tools. Using the recently developed protein tailored scoring protocol AFMoC precise prediction of binding affinities for related ligands as well as the capability to estimate the affinities of structurally distinct inhibitors has been achieved. Farnesyltransferase is a zinc-metallo enzyme that catalyzes the posttranslational modification of numerous proteins involved in intracellular signal transduction. The development of farnesyltransferase inhibitors is directed towards the so-called non-thiol inhibitors because of adverse drug effects connected to free thiols. A first step on the way to non-thiol farnesyltransferase inhibitors was the development of an CAAX-benzophenone peptidomimetic based on a pharmacophore model. On its basis bisubstrate analogues were developed as one class of non-thiol farnesyltransferase inhibitors. In further studies two aryl binding and two distinct specificity sites were postulated. Flexible docking of model compounds was applied to investigate the sub-pockets and design highly active non-thiol farnesyltransferase inhibitor. In addition to affinity, special attention was paid towards in vivo activity and species specificity. The second part of this thesis describes a possible strategy for computer-aided lead discovery. Assembling a complex ligand from simple fragments has recently been introduced as an alternative to traditional HTS. While frequently applied experimentally, only a few examples are known for computational fragment-based approaches. Mostly, computational tools are applied to compile the libraries and to finally assess the assembled ligands. Using the metalloproteinase thermolysin (TLN) as a model target, a computational fragment-based screening protocol has been established. Starting with a data set of commercially available chemical compounds, a fragment library has been compiled considering (1) fragment likeness and (2) similarity to known drugs. The library is screened for target specificity, resulting in 112 fragments to target the zinc binding area and 75 fragments targeting the hydrophobic specificity pocket of the enzyme. After analyzing the performance of multiple docking programs and scoring functions forand the most 14 candidates are selected for further analysis. Soaking experiments were performed for reference fragment to derive a general applicable crystallization protocol for TLN and subsequently for new protein-fragment complex structures. 3-Methylsaspirin could be determined to bind to TLN. Additional studies addressed a retrospective performance analysis of the applied scoring functions and modification on the screening hit. Curios about the differences of aspirin and 3-methylaspirin, 3-chloroaspirin has been synthesized and affinities could be determined to be 2.42 mM; 1.73 mM und 522 ÎŒM respectively. The results of the thesis show, that computer aided drug design approaches could successfully support projects in lead optimization and lead identification. fragments in general, the fragments derived from the screening are docke

    The microtubule stabilizer patupilone (epothilone B) is a potent radiosensitizer in medulloblastoma cells

    Full text link
    Concurrent radiochemotherapy for medulloblastoma includes the microtubule disrupting agent vincristine; however, vincristine alone or as part of a combined treatment regimen is highly toxic. A major goal is therefore to replace vincristine with novel potent chemotherapeutic agents-in particular, with microtubule stabilizing and destabilizing compounds-with a larger therapeutic window. Here, we investigated the antiproliferative, cytotoxic and radiosensitizing effect of patupilone (epothilone B [EPO906]), a novel, non-taxane-related and nonneurotoxic microtubule-stabilizing agent in human medulloblastoma cell lines. The antiproliferative and cytotoxic effects of patupilone alone and in combination with ionizing radiation was determined in the 3 representative human medulloblastoma cell lines D341Med, D425Med, and DAOY. Patupilone alone effectively reduced the proliferative activity and clonogenicity of all medulloblastoma cell lines tested at picomolar concentrations (50-200 pM) and resulted in an at least additive anticlonogenic effect in combination with clinically relevant doses of ionizing radiation (2 or 5 Gy). Cell-cycle analysis revealed a sequential G2-M arrest and sub-G1 accumulation in a dose- and treatment-dependent manner after exposure to patupilone. In tumor xenografts derived from D425Med cells, a minimal treatment regimen with patupilone and fractionated irradiation (1 × 2 mg/kg plus 3 × 3 Gy) resulted in an extended tumor growth delay for the 2 single treatment modalities alone and a supra-additive treatment response for the combined treatment modality, with complete tumor regressions. These results demonstrate the potent efficacy of patupilone against medulloblastoma cell lines and indicate that patupilone represents a promising candidate to replace vincristine as part of a combined treatment strategy with ionizing radiation

    Draft heidelberg collaboration statement of purpose (22/9/2000)

    No full text

    Recent advances in exercise pressor reflex function in health and disease

    No full text

    The DESI experiment part I: science, targeting, and survey design

    No full text
    DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to z=1.0z=1.0. To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to z=1.7z=1.7. Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts (2.1<z<3.5 2.1 < z < 3.5), for the Ly-α\alpha forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median z≈0.2z\approx 0.2. In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions
    corecore